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Abstract— In this paper an algorithm for trajectory-tracking 

and obstacle avoidance for wheeled mobile robots (WMR) is 
presented. The algorithm creates a trajectory composed of a 
global trajectory generated off-line and local obstacle avoidance 
trajectories that are created when an obstacle is detected by the 
sonar sensors. Only one discrete-time sliding-mode controller is 
required to track the resulting trajectory and it does not require 
separate controllers for following the intended trajectory and 
avoiding the obstacle. The local avoidance trajectories are 
generated using Quintic equations to generate a path for the 
robot and assigning calculating the velocity, acceleration, angular 
velocity and angular acceleration needed by the discrete-time 
sliding-mode controller. 

Keywords— sliding-mode, obstacle avoidance, WMR. 

I.  INTRODUCTION 
WMRs have been used in a multitude of applications, 

especially for industrial applications. Some of these 
applications require the robots to track a set trajectory. 
Occasionally temporary obstacles, like a broken robot, or 
fallen debris, can appear and the robots will be unable to 
follow the desired trajectory leading to a full stop of the entire 
work. A solution to this problem is to include an obstacle 
avoidance module that will allow the robot to avoid the 
blocked part of the trajectory and to return to the desired 
trajectory. This solution will add a delay to the process but 
will prevent a full stop of the process. Sliding-mode control 
(SMC) is a robust approach for various applications and it can 
be used. The SMC methodology has been presented in [1]. 
Sliding-mode has been used in many control systems, such as: 
[2]-[16]. The discrete-time sliding-mode control was chosen to 
solve the trajectory-tracking problem because it promises great 
results. One of the simplest obstacle avoidance algorithm is 
“the bug”, proposed by in [20]. This algorithm requires the 
robot to circle the obstacle before determining the best point to 
continue towards its goal. Other obstacle avoidance algorithms 
use virtual potential fields, like in [18] to determine the path 

the robot has to take in order to avoid the obstacle. The 
algorithms consider that the robot is subjected to forces that 
pull the robot towards the goal and rejecting forces that pull 
the robot away from the obstacles. The robot’s trajectory 
results from the combination of these forces. A vector field 
histogram is used in [17] for obstacle avoidance, that uses a 
histogram to reduce the errors from the sensors. A bubble 
rebound algorithm is used in [19] to avoid obstacles. The 
algorithm uses a sensitivity bubble to determine if an obstacle 
is blocking the path. If an obstacle is detected the algorithm 
calculates the path that has the minimum density of obstacles 
and moves in that direction until the goal is visible or a new 
obstacle is detected. An algorithm that uses capable of 
tracking a desired trajectory and avoids obstacles that block 
the desired path by generating local trajectories and following 
them until the initial trajectory can be resumed is proposed in 
this paper. The global and local trajectories will be merged 
and form a new trajectory that can be tracked using only one 
discrete-time sliding-mode controller. The robot used to test 
the algorithm is the two driving wheels/two free wheels 
(2DW/2FW), PowerBot (Fig. 1). The WMR PowerBot is a 
high-payload differential-drive robot capable of moving at 
speeds up sm /6.1  and carrying up to 100 kg. The obstacles 
are detected using the sonar sensors of the robot and the 
sensitivity bubble from [19]. 

The rest of the paper is organized as follows: discrete-time, 
sliding-mode control based on kinematic model of the WMR 
is presented in Section II; bubble rebound obstacle avoidance 
algorithm for the 2DW/2FW WMR PowerBot is presented in 
Section III; simulation results of obstacle avoidance, trajectory 
tracking control are presented in Section IV; some final 
remarks can be found in Section V. 

II. DISCRETE-TIME SLIDING-MODE CONTROL 
Consider the model of a wheeled mobile robot, presented 

in Fig. 2. The model takes into account the two diametrically 
opposed drive wheels of radius R, the distance between the 
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Fig. 1.  PoweBot avoing an obstacle 

 
Fig. 2. Kinetic model of a differential drive robot 

wheels ( L2 ), the angular speeds of the drive 
wheels ),( RL ωω , the center point (CP) of the robot. 

The localization of the robot is given by ( )rrr yxP θ,,= , 
where rx  represents the position on the x axis, ry  the position 
on the y axis and rθ  the heading of the robot, rv  the linear 
velocity while rω  represents the angular velocity of the robot. 
Considering a sample interval Ts and a zero-order hold, the 
kinematic model in discrete-time is  
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The trajectory tracking problem is how to design a 
controller capable of tracking a desired trajectory. For this 
purpose a virtual robot, with the desired 
trajectory ( ) ( ) ( )[ ]Tdddd kkykxkq θ=][ , is considered and 
the following kinematic model of the virtual robot is obtained: 
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Fig. 3. Trajectory tracking errors 

where ( )dddd yxP θ,,=  represents the desired pose, dv the 
desired linear velocity, dω  the desired angular velocity. The 
trajectory-tracking errors are shown in Fig.3, and can be 
expressed as follow: 
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 ][][][ kxkxkx drrd −=  (4) 

 ][][][ kykyky drrd −=  (5) 

The error dynamics for trajectory tracking are defined as 

 
xe[k +1] = xe[k]+ (v1 − vd[k]+ ye[k]⋅ωd[k]) ⋅Ts
ye[k +1] = ye[k]+ (v2 − xe[k]⋅ωd[k]) ⋅Ts
θe[k +1] = θe[k]+ (ωr[k]− ωd[k]) ⋅Ts

, (6) 

where: 

 v1 = vr[k] ⋅ cosθe[k] , (7) 

 v2 = vr[k]⋅sinθe[k] . (8) 

are the linear speed along x-axis and y-axis, respectively. 
Corresponding to [4], the discrete-time sliding mode occurs  if 
the following attractiveness condition is satisfied: 

 0])[]1[(][ <−+⋅ ksksks . (9) 

with s sliding surface. The reaching law proposed in [15] is:  

 ])[sgn(][)1(]1[ ksTksTqks ss ⋅⋅−⋅⋅−=+ ε , (10) 

 110 <⋅−< Tq ,  (11) 

 10 <⋅< sTε , (12) 

where 0>sT  is the sampling period, 0>ε  is the reaching 
velocity, 0>q  is the converging exponential. The magnitude 
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of the resulting chattering is limited within the quasi-sliding 
mode bandwidth: 

 s

s

Tq
T
⋅−

⋅⋅=Δ
1

22 ε
 (13) 

The sliding surfaces are defined as follow: 
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where k0, k1, k2 are positive constant parameters, ex , ye and 
θ2 are trajectory tracking errors. From (10) and (14), the 
sliding surfaces can be expressed as follow: 
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The discrete-time sliding-mode controller (the linear and 
angular speeds) is obtained from (10), (14), (16), (17): 
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III. SONNAR BASED OBSTACLE AVOIDANCE ALGORITHM 
 The robot is intended to track a given trajectory as long as 
no obstacle is detected. If an obstacle is detected a local 
trajectory for the avoidance of the obstacle is calculated and 
the robot will track this new trajectory until the obstacle has 
been avoided and afterwards will return to tracking the given 
trajectory. The robot uses the same discrete-time sliding-mode 
control for both the desired trajectory and the local avoidance 
trajectory. The WMR PowerBot uses 14 sonar sensors in order 
to detect the obstacles. The sensors cover an area of 180 
degrees and allow the detection of any obstacle that can block 
the robot’s path. Fig.4 presents the configuration of the sonar 
sensors of the PowerBot. The obstacle detection is achieved 
using the sensitivity bubble from [19], Fig.5. This bubble is 
dependent on the robot’s speed and allows for a good 
detection of the obstacles. Using safety coefficients and the 
robot’s speed a safety area is defined inside the sensibility  

 

Fig. 4. The sonar configuration of the Powerbot 

bubble and any obstacle detected inside this area will trigger 
the obstacle avoidance procedure. The components for the 
sensitivity bubble are calculated using 

 sii Tvkb ⋅⋅= , (20) 

where: i  is the number of the sonar; bi  is the component of 
the sensitivity bubble corresponding to sonar i ; ki  is the 
safety coefficient of the bubble corresponding to sonar i ; v  is 
the velocity of the robot; Ts  is the sample time. Fig. 6 presents 
an example of an obstacle that was detected by the sensitivity 
bubble. An obstacle is detected when the distance to the 
obstacle measured by any of the sonar sensors is lower than 
the component of the sensitivity bubble corresponding to that 
sonnar 

 Range(i) < bi . (21) 

First a global desired trajectory is generated off-line using 
a program that calculates the desired velocity, acceleration, 
angular velocity and angular acceleration for each time 
sample. A program for generating the global trajectory is 
presented in [6]. Before imposing the trajectory to the robot, 
the distances measured by the sonar sensors are collected and 
the sensitivity bubble is calculated. Using this information the 
algorithm determines if an obstacle was detected. As long as 
no obstacle is detected the desired trajectory is fed to the 
controller and the robot tracks this trajectory to its destination. 
If an obstacle is detected the obstacle the obstacle avoidance 
procedure is triggered. An obstacle detected using the 
sensitivity bubble is presented in Fig. 5. In order to avoid the 
obstacle, a local trajectory is generated. The local trajectory 
for the obstacle from Fig.5 is presented in Fig. 6. Define two 
search areas for the new trajectory bounded by the sonar 
arrays. The first seven sonar sensors determine the left area for 
avoidance and the last seven the right area for avoidance. The 
search will begin in the area opposite to the area with the 
closest obstacle. A new search will be performed in the other 
area if a solution is not found.  First the coordinates of the end 
point of the trajectory that allows the obstacle to be avoided is 
calculated. This point is situated on the line perpendicular to 
the direction of travel from the point where the closest 
obstacle was detected. 
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Fig. 5. The sensitivity buble of the PowerBot 

 Consider minh the width of the PowerBot plus a small 
safety margin, as the minimum width of an area that allows 
the passage of the robot. Once the search area was selected, 
will search for the closest sonar to the direction of travel that 
does not detect an obstacle. The algorithm determines the 
points where the sonar beams intersect the perpendicular from 
the point where the obstacle was detected to the direction of 
travel. The algorithm tries to find a segment determined by the 
intersection points, starting from the intersection point of the 
selected sonar, which is at least as long as minh . The desired 
point is located at the middle of this segment. 

The segment is searched using 

 Zejanglerangemh −⋅= ))(tan(_ , (22) 

where: h  is the length of the segment, rangem _  is the 
distance to the closest obstacle projected on the direction of 
travel, )( jangle is the angle formed by the sonar,  

))(tan(_ ianglerangemZe ⋅= is the exclusion zone, i  and j  
are the sonar sensors used at the current step. The coordinates 
are determined using 
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The path from the current robot’s position to ),,( yxP is 
determined using Quintic equations [6]. The formula of the 
Quintic G2-splines is 
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where ik , 1+ik are scalar curvatures and can be arbitrary set, 

1g , 2g , 3g , 4g are the parameters that determine the shape of 
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the curve. For each element of this path the velocity ( ][nv ), 
angular velocity ( ][nω ), acceleration ( ][na ) and angular 
acceleration ( ωa ) are calculated using: 

 ( ) ( )22 ]1[][]1[][][ −−+−−= nynynxnxnl ; (36) 

 sTnlnv /][][ = ; (37) 

 ( ) sTnxnxnynyan /]1[][],1[][2tan][ −−−−=ω ; (38) 

 Tsnvna /][][ = ; (39) 

 Tsnna /][][ ωω = ; (40) 

The desired trajectory for obstacle avoidance is presented 
in Fig. 7 with a blue line, the blocked trajectory is marked 
with a black line.This new trajectory is fed to the controller 
and when the robot reaches the end point of the trajectory it 
will move forward in a straight line with constant velocity 
until the obstacle has been cleared. Once the obstacle has been 
cleared a return trajectory is calculated and the initial 
trajectory is resumed (see the procedure from Fig.8). 

 
Fig. 6. Example of a detected obstacle 

 

Fig. 7. The desired trajectory for obstacle avoidance 

 

Fig. 8. The schematic of the obstacle avoidance algorithm 

IV. SIMULATION AND REAL-TIME CONTROL 
Simulation results are presented in order to validate the 

proposed algorithm for obstacle avoidance. The control 
program is written in C++ and run on a PC, with sampling 
time set to Ts=100ms. All the simulations were made using 
MobileSim. MobileSim is a software designed to simulate the 
behavior of robots produced by Adept Mobile Robots Inc. A 
map with the simulated obstacles was created using 
Maper3Basic and loaded into Mobilesim. The desired 
trajectory is presented in Fig. 9. The trajectory tracking was 
first tested in the absence of any obstacle and the robot 
followed the intended trajectory with small tracking errors. 
The obstacle avoidance performance of the algorithm is tested 
using the trajectory from Fig. 9 as the global trajectory needed 
to be tracked and 2 obstacles blocking this path. Fig. 10 
presents the MobileSim simulated trajectory of the robot 
obtained after avoiding the obstacles. It can be seen that the 
algorithm allows the robot to avoid the obstacles and continue 
on its initial trajectory when the path is clear. Fig. 11 presents 
the simulated trajectory and the desired trajectory resulted 
from the initial trajectory and the local avoidance trajectories. 
From this figures it can be determined that the algorithm is 
capable of tracking a desired trajectory and avoid obstacles, 
that block the intended path, and resume the initial trajectory 
afterwards. The switch between the initial trajectory and the 
local avoidance trajectory and back increase the trajectory-
tracking errors. One of the causes for the larger tracking errors 
can be attributed to the delay caused by the time required to 
obtain the sonar readings and process the information, which 
leads to higher delays in the command inputs as opposed to 
the case when only the sliding-mode control is used and the 
sonars are disabled. 

V. CONCLUSIONS 
An algorithm for discrete-time sliding-mode control and 

obstacle avoidance for wheeled mobile robots is presented in 
this paper. The effectiveness of this algorithm is proven by 
simulation results. The robot tracks a global trajectory and, if 
an obstacle is detected, a local trajectory is generated and 
followed until the obstacle is cleared and the initial trajectory 
is resumed. Both trajectories are followed using the same 
discrete-time sliding mode controller. An increase of the errors 
in the trajectory tracking is caused by switching from the 
global and local trajectories, but the robot can still follow the 
trajectory with satisfactory precision. 
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Fig. 9. The MobileSim simulated trajectory without obstacles 

 

Fig. 10. The MobileSim simulated trajectory with 2 obstacles blocking the 
intended trajectory 

 

Fig. 11. The simulated trajectory and the desired trajectory 
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