
Sliding-Mode Control and Sonnar Based
Bubble Rebound Obstacle Avoidance for a WMR

Adrian Filipescu, Bogdan Dumitrascu,
Adriana Filipescu, George Ciubucciu

Department of Automation and Electrical Engineering
“Dunarea de Jos” University of Galati, Romania

Adrian.Filipescu@ugal.ro

Eugenia Minca
Department of Automation, Computer Science and

Electrical Engineering
 “Valahia” University of Targoviste, Romania

eugenia.minca@gmail.com

Alina Voda
Grenoble Image Parole Signal Automatique (GIPSA-lab),

University Joseph Fourier Grenoble 1/CNRS,
UMR 5216, B.P. 46, F-38402 St Martin d’Heres, France

alina.voda@gipsa-lab.grenoble-inp.fr

Abstract— In this paper an algorithm for trajectory-tracking

and obstacle avoidance for wheeled mobile robots (WMR) is
presented. The algorithm creates a trajectory composed of a
global trajectory generated off-line and local obstacle avoidance
trajectories that are created when an obstacle is detected by the
sonar sensors. Only one discrete-time sliding-mode controller is
required to track the resulting trajectory and it does not require
separate controllers for following the intended trajectory and
avoiding the obstacle. The local avoidance trajectories are
generated using Quintic equations to generate a path for the
robot and assigning calculating the velocity, acceleration, angular
velocity and angular acceleration needed by the discrete-time
sliding-mode controller.

Keywords— sliding-mode, obstacle avoidance, WMR.

I. INTRODUCTION
WMRs have been used in a multitude of applications,

especially for industrial applications. Some of these
applications require the robots to track a set trajectory.
Occasionally temporary obstacles, like a broken robot, or
fallen debris, can appear and the robots will be unable to
follow the desired trajectory leading to a full stop of the entire
work. A solution to this problem is to include an obstacle
avoidance module that will allow the robot to avoid the
blocked part of the trajectory and to return to the desired
trajectory. This solution will add a delay to the process but
will prevent a full stop of the process. Sliding-mode control
(SMC) is a robust approach for various applications and it can
be used. The SMC methodology has been presented in [1].
Sliding-mode has been used in many control systems, such as:
[2]-[16]. The discrete-time sliding-mode control was chosen to
solve the trajectory-tracking problem because it promises great
results. One of the simplest obstacle avoidance algorithm is
“the bug”, proposed by in [20]. This algorithm requires the
robot to circle the obstacle before determining the best point to
continue towards its goal. Other obstacle avoidance algorithms
use virtual potential fields, like in [18] to determine the path

the robot has to take in order to avoid the obstacle. The
algorithms consider that the robot is subjected to forces that
pull the robot towards the goal and rejecting forces that pull
the robot away from the obstacles. The robot’s trajectory
results from the combination of these forces. A vector field
histogram is used in [17] for obstacle avoidance, that uses a
histogram to reduce the errors from the sensors. A bubble
rebound algorithm is used in [19] to avoid obstacles. The
algorithm uses a sensitivity bubble to determine if an obstacle
is blocking the path. If an obstacle is detected the algorithm
calculates the path that has the minimum density of obstacles
and moves in that direction until the goal is visible or a new
obstacle is detected. An algorithm that uses capable of
tracking a desired trajectory and avoids obstacles that block
the desired path by generating local trajectories and following
them until the initial trajectory can be resumed is proposed in
this paper. The global and local trajectories will be merged
and form a new trajectory that can be tracked using only one
discrete-time sliding-mode controller. The robot used to test
the algorithm is the two driving wheels/two free wheels
(2DW/2FW), PowerBot (Fig. 1). The WMR PowerBot is a
high-payload differential-drive robot capable of moving at
speeds up sm /6.1 and carrying up to 100 kg. The obstacles
are detected using the sonar sensors of the robot and the
sensitivity bubble from [19].

The rest of the paper is organized as follows: discrete-time,
sliding-mode control based on kinematic model of the WMR
is presented in Section II; bubble rebound obstacle avoidance
algorithm for the 2DW/2FW WMR PowerBot is presented in
Section III; simulation results of obstacle avoidance, trajectory
tracking control are presented in Section IV; some final
remarks can be found in Section V.

II. DISCRETE-TIME SLIDING-MODE CONTROL
Consider the model of a wheeled mobile robot, presented

in Fig. 2. The model takes into account the two diametrically
opposed drive wheels of radius R, the distance between the

2015 19th International Conference on System Theory, Control and Computing (ICSTCC), October 14-16, Cheile Gradistei, Romania

978-1-4799-8481-7/15/$31.00 ©2015 IEEE 105

Fig. 1. PoweBot avoing an obstacle

Fig. 2. Kinetic model of a differential drive robot

wheels (L2), the angular speeds of the drive
wheels),(RL ωω , the center point (CP) of the robot.

The localization of the robot is given by ()rrr yxP θ,,= ,
where rx represents the position on the x axis, ry the position
on the y axis and rθ the heading of the robot, rv the linear
velocity while rω represents the angular velocity of the robot.
Considering a sample interval Ts and a zero-order hold, the
kinematic model in discrete-time is

⎪
⎩

⎪
⎨

⎧

⋅+=+
⋅⋅+=+
⋅⋅+=+

srrr

srrrr

srrrr

Tkkk
Tkkvkyky
Tkkvkxkx

][][]1[
][sin][][]1[
][cos][][]1[

ωθθ
θ
θ

. (1)

The trajectory tracking problem is how to design a
controller capable of tracking a desired trajectory. For this
purpose a virtual robot, with the desired
trajectory () () ()[]Tdddd kkykxkq θ=][, is considered and
the following kinematic model of the virtual robot is obtained:

⎪
⎩

⎪
⎨

⎧

⋅+=+
⋅⋅+=+
⋅⋅+=+

sddd

sdddd

sdddd

Tkkk
Tkkvkyky
Tkkvkxkx

][][]1[
][sin][][]1[
][cos][][]1[

ωθθ
θ
θ

, (2)

Fig. 3. Trajectory tracking errors

where ()dddd yxP θ,,= represents the desired pose, dv the
desired linear velocity, dω the desired angular velocity. The
trajectory-tracking errors are shown in Fig.3, and can be
expressed as follow:

⎪
⎩

⎪
⎨

⎧

−=
⋅+⋅−=

⋅+⋅=

][][][
][cos][][sin][][

][sin][][cos][][

kkk
kkykkxky

kkykkxkx

dre

erderde

erderde

θθθ
θθ

θθ

(3)

][][][kxkxkx drrd −= (4)

][][][kykyky drrd −= (5)

The error dynamics for trajectory tracking are defined as

xe[k +1] = xe[k]+ (v1 − vd[k]+ ye[k]⋅ωd[k]) ⋅Ts
ye[k +1] = ye[k]+ (v2 − xe[k]⋅ωd[k]) ⋅Ts
θe[k +1] = θe[k]+ (ωr[k]− ωd[k]) ⋅Ts

, (6)

where:

 v1 = vr[k] ⋅ cosθe[k] , (7)

 v2 = vr[k]⋅sinθe[k] . (8)

are the linear speed along x-axis and y-axis, respectively.
Corresponding to [4], the discrete-time sliding mode occurs if
the following attractiveness condition is satisfied:

 0])[]1[(][<−+⋅ ksksks . (9)

with s sliding surface. The reaching law proposed in [15] is:

])[sgn(][)1(]1[ksTksTqks ss ⋅⋅−⋅⋅−=+ ε , (10)

 110 <⋅−< Tq , (11)

 10 <⋅< sTε , (12)

where 0>sT is the sampling period, 0>ε is the reaching
velocity, 0>q is the converging exponential. The magnitude

106

of the resulting chattering is limited within the quasi-sliding
mode bandwidth:

 s

s

Tq
T
⋅−

⋅⋅=Δ
1

22 ε
 (13)

The sliding surfaces are defined as follow:

⎩
⎨
⎧

⋅⋅+⋅++=
⋅++=

][]sgn[][]1[][
][]1[][

022

11

kkkkykkyks
kxkkxks

eee

ee

θ
, (14)

])[sgn(]sgn[kyk e= , (15)

where k0, k1, k2 are positive constant parameters, ex , ye and
θ2 are trajectory tracking errors. From (10) and (14), the
sliding surfaces can be expressed as follow:

])[sgn(

][)1(]1[]2[]1[

1

111

ksT
ksTqkxkkxks

s

see

⋅⋅
−⋅⋅−=+⋅++=+

ε
,(16)

])[sgn(][)1(

][])[sgn(]1[]2[]1[

11

022

ksTksTq
kkykkykkyks

ss

eeee

⋅⋅−⋅⋅−
=⋅⋅++⋅++=+

ε
θ

. (17)

The discrete-time sliding-mode controller (the linear and
angular speeds) is obtained from (10), (14), (16), (17):

]])1[][
][]1[][sin]1[][

]1[()1(]1[][sgn(

][)1([
][cos

1]1[

11

111

sed

edeer

des

s
se

Tkyk
kykkkkv

kvkkxksT

ksTq
Tk

kv

⋅+⋅
−⋅+−⋅+⋅

−+−+⋅+−⋅⋅

⋅+⋅⋅−−⋅
⋅

=+

ω
ωθθ

ε
θ

, (18)

][)]])1[][][]1[
][sin]1[()1(]1[

][])[sgn(][)

1([
]1[sgncos][

1][

2

2222

0

kwTkxkkxk
kkvkky

kksTksTq
kykkv

k

dseded

ere

ess

eer

+⋅+⋅−⋅+
+⋅+−+⋅+

−−⋅⋅+⋅⋅

−−⋅
+⋅+⋅

=

ωω
θ

θε
θ

ω

(19)

III. SONNAR BASED OBSTACLE AVOIDANCE ALGORITHM
 The robot is intended to track a given trajectory as long as
no obstacle is detected. If an obstacle is detected a local
trajectory for the avoidance of the obstacle is calculated and
the robot will track this new trajectory until the obstacle has
been avoided and afterwards will return to tracking the given
trajectory. The robot uses the same discrete-time sliding-mode
control for both the desired trajectory and the local avoidance
trajectory. The WMR PowerBot uses 14 sonar sensors in order
to detect the obstacles. The sensors cover an area of 180
degrees and allow the detection of any obstacle that can block
the robot’s path. Fig.4 presents the configuration of the sonar
sensors of the PowerBot. The obstacle detection is achieved
using the sensitivity bubble from [19], Fig.5. This bubble is
dependent on the robot’s speed and allows for a good
detection of the obstacles. Using safety coefficients and the
robot’s speed a safety area is defined inside the sensibility

Fig. 4. The sonar configuration of the Powerbot

bubble and any obstacle detected inside this area will trigger
the obstacle avoidance procedure. The components for the
sensitivity bubble are calculated using

 sii Tvkb ⋅⋅= , (20)

where: i is the number of the sonar; bi is the component of
the sensitivity bubble corresponding to sonar i ; ki is the
safety coefficient of the bubble corresponding to sonar i ; v is
the velocity of the robot; Ts is the sample time. Fig. 6 presents
an example of an obstacle that was detected by the sensitivity
bubble. An obstacle is detected when the distance to the
obstacle measured by any of the sonar sensors is lower than
the component of the sensitivity bubble corresponding to that
sonnar

 Range(i) < bi . (21)

First a global desired trajectory is generated off-line using
a program that calculates the desired velocity, acceleration,
angular velocity and angular acceleration for each time
sample. A program for generating the global trajectory is
presented in [6]. Before imposing the trajectory to the robot,
the distances measured by the sonar sensors are collected and
the sensitivity bubble is calculated. Using this information the
algorithm determines if an obstacle was detected. As long as
no obstacle is detected the desired trajectory is fed to the
controller and the robot tracks this trajectory to its destination.
If an obstacle is detected the obstacle the obstacle avoidance
procedure is triggered. An obstacle detected using the
sensitivity bubble is presented in Fig. 5. In order to avoid the
obstacle, a local trajectory is generated. The local trajectory
for the obstacle from Fig.5 is presented in Fig. 6. Define two
search areas for the new trajectory bounded by the sonar
arrays. The first seven sonar sensors determine the left area for
avoidance and the last seven the right area for avoidance. The
search will begin in the area opposite to the area with the
closest obstacle. A new search will be performed in the other
area if a solution is not found. First the coordinates of the end
point of the trajectory that allows the obstacle to be avoided is
calculated. This point is situated on the line perpendicular to
the direction of travel from the point where the closest
obstacle was detected.

107

Fig. 5. The sensitivity buble of the PowerBot

 Consider minh the width of the PowerBot plus a small
safety margin, as the minimum width of an area that allows
the passage of the robot. Once the search area was selected,
will search for the closest sonar to the direction of travel that
does not detect an obstacle. The algorithm determines the
points where the sonar beams intersect the perpendicular from
the point where the obstacle was detected to the direction of
travel. The algorithm tries to find a segment determined by the
intersection points, starting from the intersection point of the
selected sonar, which is at least as long as minh . The desired
point is located at the middle of this segment.

The segment is searched using

 Zejanglerangemh −⋅=))(tan(_ , (22)

where: h is the length of the segment, rangem _ is the
distance to the closest obstacle projected on the direction of
travel,)(jangle is the angle formed by the sonar,

))(tan(_ ianglerangemZe ⋅= is the exclusion zone, i and j
are the sonar sensors used at the current step. The coordinates
are determined using

⎪
⎩

⎪
⎨

⎧

⋅+−⋅−=

⋅+−⋅+=

)sin()
2

()cos(_

)sin()
2

()cos(_

rrr

rrr

Zehrangemyy

Zehrangemxx

θθ

θθ
 (23)

The path from the current robot’s position to),,(yxP is
determined using Quintic equations [6]. The formula of the
Quintic G2-splines is

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⋅++⋅+⋅+
⋅++⋅+⋅+

=+

)(
)(5

5
2

210

5
5

2
210

1,

u
uuu
uuu

up

i

iiii

iiii

ii

θ
ββββ
αααα

…
…

, (24)

)0(0 ii x=α , (25)

))0(cos(11 ii g θα ⋅= , (26)

 ()()()0sin))0(cos(
2
1 2

132 iiii kgg θθα ⋅⋅−⋅= , (27)

()

))0(sin(
2
1

))0(sin(
2
3))0(cos(

2
14

))0(cos(
2
3610

11
2
2

2
1142

3113

++

+

+

⋅⋅−

⋅⋅⋅+⎟
⎠
⎞

⎜
⎝
⎛ −⋅

−⎟
⎠
⎞

⎜
⎝
⎛ ⋅+⋅−−⋅=

ii

iii

iii

kg

kggg

ggxx

θ

θθ

θα

, (28)

()

()

))0(sin(

))0(sin(
2
3))0(cos(7

))0(cos(
2
3815

11
2
2

2
1142

3114

++

+

+

⋅⋅

+⋅⋅⋅−−⋅

+⎟
⎠
⎞

⎜
⎝
⎛ ⋅+⋅+−⋅−=

ii

iii

iii

kg

kggg

ggxx

θ

θθ

θα

, (29)

()

))0(sin(
2
1

))0(sin(
2
1))0(cos(

2
13

))0(cos(
2
136

11
2
2

2
1142

3115

++

+

+

⋅⋅−

⋅⋅⋅+⎟
⎠
⎞

⎜
⎝
⎛ −⋅

−⎟
⎠
⎞

⎜
⎝
⎛ ⋅+⋅−−⋅=

ii

iii

iii

kg

kggg

ggxx

θ

θθ

θα

, (30)

)0(0 ii y=β , (31)

 ()))0(cos())0(sin(
2
1 2

132 iiii kgg θθβ ⋅⋅−⋅= , (32)

()

))0(cos(
2
1

))0(cos(
2
3))0(sin(

2
14

))0(sin(
2
3610

11
2
2

2
1142

3113

++

+

+

⋅⋅

−⋅⋅⋅+⎟
⎠
⎞

⎜
⎝
⎛ −⋅

−⎟
⎠
⎞

⎜
⎝
⎛ ⋅+⋅−−⋅=

ii

iii

iii

kg

kggg

ggyy

θ

θθ

θβ

, (33)

()

()

))0(cos(

))0(cos(
2
3))0(sin(7

))0(sin(
2
3815

11
2
2

2
1142

3114

++

+

+

⋅⋅+

⋅⋅⋅−−⋅+

⎟
⎠
⎞

⎜
⎝
⎛ ⋅+⋅+−⋅−=

ii

iii

iii

kg

kggg

ggyy

θ

θθ

θβ

, (34)

()

))0(cos(
2
1

))0(cos(
2
1))0(sin(

2
13

))0(sin(
2
136

11
2
2

2
1142

3115

++

+

+

⋅⋅−

⋅⋅⋅+⎟
⎠
⎞

⎜
⎝
⎛ −⋅

−⎟
⎠
⎞

⎜
⎝
⎛ ⋅+⋅−−⋅=

ii

iii

iii

kg

kggg

ggyy

θ

θθ

θβ

, (35)

where ik , 1+ik are scalar curvatures and can be arbitrary set,

1g , 2g , 3g , 4g are the parameters that determine the shape of

108

the curve. For each element of this path the velocity (][nv),
angular velocity (][nω), acceleration (][na) and angular
acceleration (ωa) are calculated using:

 () ()22]1[][]1[][][−−+−−= nynynxnxnl ; (36)

 sTnlnv /][][= ; (37)

 () sTnxnxnynyan /]1[][],1[][2tan][−−−−=ω ; (38)

 Tsnvna /][][= ; (39)

 Tsnna /][][ωω = ; (40)

The desired trajectory for obstacle avoidance is presented
in Fig. 7 with a blue line, the blocked trajectory is marked
with a black line.This new trajectory is fed to the controller
and when the robot reaches the end point of the trajectory it
will move forward in a straight line with constant velocity
until the obstacle has been cleared. Once the obstacle has been
cleared a return trajectory is calculated and the initial
trajectory is resumed (see the procedure from Fig.8).

Fig. 6. Example of a detected obstacle

Fig. 7. The desired trajectory for obstacle avoidance

Fig. 8. The schematic of the obstacle avoidance algorithm

IV. SIMULATION AND REAL-TIME CONTROL
Simulation results are presented in order to validate the

proposed algorithm for obstacle avoidance. The control
program is written in C++ and run on a PC, with sampling
time set to Ts=100ms. All the simulations were made using
MobileSim. MobileSim is a software designed to simulate the
behavior of robots produced by Adept Mobile Robots Inc. A
map with the simulated obstacles was created using
Maper3Basic and loaded into Mobilesim. The desired
trajectory is presented in Fig. 9. The trajectory tracking was
first tested in the absence of any obstacle and the robot
followed the intended trajectory with small tracking errors.
The obstacle avoidance performance of the algorithm is tested
using the trajectory from Fig. 9 as the global trajectory needed
to be tracked and 2 obstacles blocking this path. Fig. 10
presents the MobileSim simulated trajectory of the robot
obtained after avoiding the obstacles. It can be seen that the
algorithm allows the robot to avoid the obstacles and continue
on its initial trajectory when the path is clear. Fig. 11 presents
the simulated trajectory and the desired trajectory resulted
from the initial trajectory and the local avoidance trajectories.
From this figures it can be determined that the algorithm is
capable of tracking a desired trajectory and avoid obstacles,
that block the intended path, and resume the initial trajectory
afterwards. The switch between the initial trajectory and the
local avoidance trajectory and back increase the trajectory-
tracking errors. One of the causes for the larger tracking errors
can be attributed to the delay caused by the time required to
obtain the sonar readings and process the information, which
leads to higher delays in the command inputs as opposed to
the case when only the sliding-mode control is used and the
sonars are disabled.

V. CONCLUSIONS
An algorithm for discrete-time sliding-mode control and

obstacle avoidance for wheeled mobile robots is presented in
this paper. The effectiveness of this algorithm is proven by
simulation results. The robot tracks a global trajectory and, if
an obstacle is detected, a local trajectory is generated and
followed until the obstacle is cleared and the initial trajectory
is resumed. Both trajectories are followed using the same
discrete-time sliding mode controller. An increase of the errors
in the trajectory tracking is caused by switching from the
global and local trajectories, but the robot can still follow the
trajectory with satisfactory precision.

109

ACKNOWLEDGMENT
This work was supported by the Romanian Executive Unit

of Funding Higher Education, Research, Development and
Innovation (UEFISCDI), project number PN-II-ID-PCE-2011-
3-0641, project title: Advanced control of reversible
manufacturing systems of assembling and disassembling using
wheeled mobile robots equipped with robotic manipulators
and by the project number PN-II-PT-PCCA-2013-4-0686,
project title: Prototypes of autonomous robotic systems for
medical/social assistance and servicing of manufacturing
processes in metallurgy, ceramics, glass and automotive.

Fig. 9. The MobileSim simulated trajectory without obstacles

Fig. 10. The MobileSim simulated trajectory with 2 obstacles blocking the
intended trajectory

Fig. 11. The simulated trajectory and the desired trajectory

REFERENCES
[1] V.I. Utkin, Sliding modes in optimization and control. New York:

Springer-Verlag, 1992.
[2] V.I. Utkin, J. Shi, Sliding mode control in electromechanical systems.

London: Taylor&Francis, 1999.
[3] W. Gao, J. C. Hung, “Variable structure control on nonlinear systems: A

new approach,” IEEE Transactions on Industrial Electronics, vol. 40,
pp. 45–55, 1993.

[4] W. Gao, Y. Wang and A. Homaifa, “”Discrete-time variable structure
control systems,” IEEE Transactions on Industrial Electronics, vol. 42,
pp. 117–122, April 1995.

[5] R. Solea, A. Filipescu and G. Stamatescu, “Sliding-mode real-time
mobile platform control in the presence of uncertainties,” in Proc. 48th
IEEE Conference on Decision and Control and 28th Chinese Control
Conference, Shanghai, pp. 7747-7752, 2009.

[6] R. Solea, “Sliding mode control applied in trajectory-tracking of WMRs
and autonomous vehicles,” Ph.D. Thesis Dept. of Electrical and
Computer Engineering, University of Coimbra, Portugal, 2009.

[7] R. Solea, A. Filipescu, U. Nunes, “Sliding-mode control for trajectory-
tracking of a wheeled mobile robot in presence of uncertainties,” in
Proc. 7th Asian Control Conference, Hong Kong, pp. 1701-1706, 2009.

[8] R. Solea, A. Filipescu, S. Filipescu and B. Dumitrascu, “Sliding-mode
controller for four-wheel-steering vehicle: Trajectory-tracking problem,”
in Proc. 8th World Congress on Inteligent Control and Automation,
Jinan, pp. 1185-1190, 2010.

[9] R. Solea, A. Filipescu, V. Minzu and S. Filipescu, “Sliding-mode
trajectory-tracking control for a four,” in Proc. 8th IEEE International
Conference on Control and Automation, Xiamen, pp. 382-387, 2010.

[10] K. Furuta and Y. Pan, “Discrete-time variable structure control,” Lecture
Notes in Control and Information Sciences, vol. 274, pp 57-81, Berlin:
Springer, 2006.

[11] B. Bandyopadhyay and S. Janardhanan, “Discrete-time sliding mode
control: A multirate output feedback approach,” Lecture Notes in
Control and Information Sciences, vol. 323, Berlin: Springer-Verlag,
2005.

[12] B. Dumitrascu and A. Filipescu, “Discrete-time sliding-mode controller
for wheeled mobile robots,” ,” in Proc. 18th International Conference
on Control Systems and Computer Science, vol.1, Bucharest, pp. 397-
403, may, 2011.

[13] B. Dumitrascu and A. Filipescu, “Sliding mode control of lateral motion
for four driving-steering wheels autonomous vehicle,” Annals of the
University of Craiova, vol(7), pp. 20-25, 2010.

[14] B. Dumitrascu and A. Filipescu, A. Radaschin, A. Filipescu Jr., E.
Minca, “Discrete-time sliding mode control of four driving/steering
wheels mobile platform,” in Proc. 8th Asian Control Conference (ASCC),
Kaohiung, Taiwan, pp 771-776, 2011.

[15] A. Filipescu, V. Minzu, B. Dumitrascu, A. Filipescu, “Trajectory-
tracking and discrete time sliding-mode control of wheeled mobile
robots, The 2011 IEEE International Conference on Information and
Automation, Shenzhen, China, pp. 27-32, 2011.

[16] B. Dumitrascu, “Contributions to control, navigation and obstacle
avoidance for mobile robots and autonomous vehicles,” Ph.D. Thesis
Dept. Department of Automation and Electrical Engineering, University
Dunarea de Jos of Galati, Romania, 2012.

[17] J. Borenstein, Y. Koren, “The vector field histogram-fast obstacle
avoidance for mobile robots,” IEEE Journal of Robotics and
Automation, vol. 7, pp 278-288, 1991.

[18] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots, IEEE International Conference on Robotics and Automation, pp
500-505, 1985.

[19] Susnea I, A. Filipescu, G. Vasiliu, G. Coman, A. Radaschin, “”The
buble rebound obstacle avoidance algorithm for mobile robots,” in Proc.
8th International Conference on Control and Automation, Xiamen, pp.
540-545, 2010.

[20] Lumelsky, V., Skewis, T., “Incorporating Range Sensing in the Robot
Navigation Function.” IEEE Transactions on Systems, Man, and
Cybernetics, 20:1990, pp. 1058–1068.

110

