

Abstract— In this paper is presented an algorithm for

trajectory-tracking and obstacle avoidance for wheeled mobile

robots (WMR). The proposed algorithm creates a trajectory

composed of a global trajectory generated off-line and local

obstacle avoidance trajectories that are created when an

obstacle is detected by the sonar and laser sensors. Only one

discrete-time sliding-mode controller is required to track the

resulting trajectory and it does not require separate controllers

for following the intended trajectory and avoiding the obstacle.

Quantic equations are used to generate the paths used by the

robot and calculating the velocity, acceleration, angular

velocity and angular acceleration needed by the discrete-time

sliding-mode controller to avoid the obstacles Realistic

simulations and experimental results are performed to test the

validity and performance of the proposed obstacle avoidance

algorithm and the trajectory tracking controller.

I. INTRODUCTION

Wheeled mobile robots are used in many applications, to
carry out tasks in unknown environments, especially for
industrial applications. Their ability to perform such tasks
depends on how the environment interacts with objects.
Some of these applications require the robots to track a set
trajectory. The WMRs must go around occasionally
temporary obstacles, like a: broken robot, columns, boxes,
tables and workers, and the robots will be unable to follow
the desired trajectory leading to a full stop of the entire work.
A solution to this problem is to include an obstacle avoidance
module that will allow the robot to avoid the blocked part of
the trajectory and to return to the desired trajectory. This
solution will add a delay to the process but will prevent a full
stop of the process. Sliding-mode control (SMC) is a robust
approach that is used for applications involving nonlinear
control. The SMC methodology has been presented in [1].
Sliding-mode has been used in many control systems, such
as: [2]-[16]. One of the simplest obstacle avoidance
algorithm is “the bug”, proposed by in [20]. This algorithm
requires the robot to circle the obstacle before determining
the best point to continue towards its goal. Other obstacle
avoidance algorithms use virtual potential fields, like in [18]
to determine the path the robot has to take in order to avoid

G. Ciubucciu, A. Filipescu, Jr., S. Filipescu are PH. D. students with the

Department of Automation and Electrical Engineering, “Dunarea de Jos”

University of Galati, Domneasca 47, 800008, Galati, Romania (Phone:
+40724537594; fax: 236 460182, e-mail: ciubucciu_george@yahoo.com)

A. Filipescu is professor with the Department of Automation and

Electrical Engineering, “Dunarea de Jos” University of Galati, Domneasca
47, 800008, Galati, Romania (Corresponding author, Phone:

+40724537594; fax: 236 460182, e-mail: adrian.filipescu@ugal.ro).

B. Dumitrascu is PH. D. in Control Systems with the Department of
Automation and Electrical Engineering, “Dunarea de Jos” University of

Galati, Domneasca 47, 800008, Galati, Romania (Phone: +40724537594;

fax: 236 460182, e-mail: dumi_b20@yahoo.com).

the obstacle. The algorithms consider that the robot is
subjected to forces that pull the robot towards the goal and
rejecting forces that pull the robot away from the obstacles.
The robot’s trajectory results from the combination of these
forces. A vector field histogram is used in [17] for obstacle
avoidance, that uses a histogram to reduce the errors from the
sensors. A bubble rebound algorithm is used in [19] to avoid
obstacles. The algorithm uses a sensitivity bubble to
determine if an obstacle is blocking the path. If an obstacle is
detected the algorithm calculates the path that has the
minimum density of obstacles and moves in that direction
until the goal is visible or a new obstacle is detected.

An algorithm that is capable of tracking a desired
trajectory and avoids obstacles that block the desired path by
generating local trajectories and following them until the
initial trajectory can be resumed is proposed in this paper.
The global and local trajectories will be merged and form a
new trajectory that can be tracked using only one discrete-
time sliding-mode controller. The robot used to test the
algorithm is the two driving wheels/two free wheels
(2DW/2FW), PowerBot (Fig. 1). The obstacles are detected
using the sonar sensors of the robot or the laser mounted on
the robot and the sensitivity bubble algorithm from [19].

The rest of the paper is organized as follows: discrete-
time, sliding-mode control based on kinematic model of the
WMR is presented in Section II; bubble rebound obstacle
avoidance algorithm for the 2DW/2FW. WMR PowerBot is
presented in Section III; simulation results of obstacle
avoidance, trajectory tracking control are presented in
Section IV; some final remarks can be found in Section V.

II. DISCRETE-TIME SLIDING-MODE CONTROL

Consider the model of a wheeled mobile robot, presented in

Fig. 2. The model takes into account the two diametrically

opposed drive wheels of radius R, the distance between the

wheels (2L), the angular speeds of the drive wheels

),(RL
, the center point (CP) of the robot.

Figure 1. PoweBot avoiding an obstacle using Urg laser

Control and Obstacle Avoidance of a WMR,

Based on Sliding-Mode, Ultrasounds and Laser

George Ciubucciu, Adrian Filipescu, Adriana Filipescu, Silviu Filipescu, Bogdan Dumitrascu

12th IEEE International Conference on Control & Automation (ICCA)
Kathmandu, Nepal, June 1-3, 2016

978-1-5090-1737-9/16/$31.00 ©2016 IEEE 779

Figure 2. Kinetic model of a differential drive robot.

The localization of the robot is given by:
 rrr yxP ,,

,

where rx represents the position on the x axis, ry the

position on the y axis, r the heading of the robot, rv the

linear velocity while,
)(r represents the angular velocity of

the robot.
Considering a sample interval Ts and a zero-order hold,

the kinematic model in discrete-time is:

srrr

srrrr

srrrr

Tkkk

Tkkvkyky

Tkkvkxkx

][][]1[

][sin][][]1[

][cos][][]1[

The trajectory tracking problem is how to design a
controller capable of tracking a desired trajectory. For this
purpose a virtual robot, with the desired trajectory

 Tdddd kkykxkq][, is considered and the

following kinematic model of the virtual robot is obtained:

sddd

sdddd

sdddd

Tkkk

Tkkvkyky

Tkkvkxkx

][][]1[

][sin][][]1[

][cos][][]1[

The trajectory tracking errors where:

 dddd yxP ,, represents the desired pose, dv the desired

linear velocity, d the desired angular velocity.

The trajectory-tracking errors are shown in Fig.5, and can be
expressed as follow:

Figure 3. Trajectory tracking errors

][][][

][cos][][sin][][

][sin][][cos][][

kkk

kkykkxky

kkykkxkx

dre

erderde

erderde

][][][kxkxkx drrd

][][][kykyky drrd

The error dynamics for trajectory tracking are defined as:

sdree

sdeee

sdedee

Tkkkk

Tkkxvkyky

Tkkykvvkxkx

])[][(][]1[

])[][(][]1[

])[][][(][]1[

2

1

where:

][cos][1 kkvv er

][sin][2 kkvv er

are the linear speed along x-axis and y-axis, respectively.
Corresponding to [4], the discrete-time sliding mode occurs
if the following attractiveness condition is satisfied:

 0])[]1[(][ksksks

with s sliding surface. The reaching law proposed in [15] is:

])[sgn(][)1(]1[ksTksTqks ss

 110 Tq

 10 sT

where 0sT is the sampling period, 0 is the reaching

velocity, 0q is the converging exponential. The magnitude

of the resulting chattering is limited within the quasi-sliding
mode bandwidth:

 s

s

Tq

T

1

22

The sliding surfaces are defined as follow:

][]sgn[][]1[][

][]1[][

022

11

kkkkykkyks

kxkkxks

eee

ee

])[sgn(]sgn[kyk e

where k0, k1, k2 are positive constant parameters, ex , yeand

2 are trajectory tracking errors. From (10) and (14), the

sliding surfaces can be expressed as follow:

])[sgn(

][)1(]1[]2[]1[

1

111

ksT

ksTqkxkkxks

s

see

780

])[sgn(][)1(

][])[sgn(]1[]2[]1[

11

022

ksTksTq

kkykkykkyks

ss

eeee

The discrete-time sliding-mode controller (the linear and
angular speeds) is obtained from (10), (14), (16), (17):

]])1[][

][]1[][sin]1[][

]1[()1(]1[][sgn(

][)1([
][cos

1
]1[

11

111

sed

edeer

des

s
se

Tkyk

kykkkkv

kvkkxksT

ksTq
Tk

kv

][)]])1[][][]1[

][sin]1[()1(]1[

][])[sgn(][)

1([
]1[sgncos][

1
][

2

2222

0

kwTkxkkxk

kkvkky

kksTksTq

kykkv
k

dseded

ere

ess

eer

III. SONAR AND LASER BASED OBSTACLE AVOIDANCE

ALGORITHM

The robot is intended to track a given trajectory as long as
no obstacle is detected. If an obstacle is detected a local
trajectory for the avoidance of the obstacle is calculated and
the robot will track this new trajectory until the obstacle has
been avoided and afterwards will return to tracking the given
trajectory. The robot uses the same discrete-time sliding-
mode control for both the desired trajectory and the local
avoidance trajectory.

For the sonar based obstacle avoidance algorithm the
WMR PowerBot uses 14 sonar sensors in order to detect the
obstacles. The sensors cover an area of 180 degrees and
allow the detection of any obstacle that can block the robot’s
path. Fig.5 presents the configuration of the sonar sensors of
the PowerBot. For the laser based obstacle avoidance
algorithm the WMR PowerBot uses a URG 2.0 Laser (Fig.4).
The obstacle detection is achieved using the sensitivity
bubble from [19], This bubble is dependent on the robot’s
speed and allows for a good detection of the obstacles. Using
safety coefficients and the robot’s speed a safety area is
defined inside the sensibility bubble and any obstacle
detected inside this area will trigger the obstacle avoidance
procedure.

Figure 4. Laser detection zone

The components for the sensitivity bubble are calculated
using:

 sii Tvkb

where: i is the number of the sonar; bi is the component of

the sensitivity bubble corresponding to sonar i ; ki is the

safety coefficient of the bubble corresponding to sonar i ; v

is the velocity of the robot; Ts is the sample time. Fig. 6

presents an example of an obstacle that was detected by the

sensitivity bubble. An obstacle is detected when the distance

to the obstacle measured by any of the sonar sensors is lower

than the component of the sensitivity bubble corresponding to

that sonar:

 ibiRange)(

First a global desired trajectory is generated off-line using
a program that calculates the desired velocity, acceleration,
angular velocity and angular acceleration for each time
sample. A program for generating the global trajectory is
presented in [6]. Before imposing the trajectory to the robot,
the distances measured by the sonar sensors are collected and
the sensitivity bubble is calculated. Using this information
the algorithm determines if an obstacle was detected. As long
as no obstacle is detected the desired trajectory is fed to the
controller and the robot tracks this trajectory to its
destination. If an obstacle is detected the obstacle the obstacle
avoidance procedure is triggered. An obstacle detected using
the sensitivity bubble is presented in Fig. 5. In order to avoid
the obstacle, a local trajectory is generated. The local
trajectory for the obstacle from Fig.5 is presented in Fig. 6.
Define two search areas for the new trajectory bounded by
the sonar arrays.

Figure 5. The sensitivity buble of the PowerBot

The first seven sonar sensors determine the left area for
avoidance and the last seven the right area for avoidance. The
search will begin in the area opposite to the area with the
closest obstacle. A new search will be performed in the other
area if a solution is not found. First the coordinates of the
end point of the trajectory that allows the obstacle to be
avoided is calculated. This point is situated on the line
perpendicular to the direction of travel from the point where
the closest obstacle was detected.

Consider minh the width of the PowerBot plus a small

safety margin, as the minimum width of an area that allows
the passage of the robot. Once the search area was selected,

781

will search for the closest sonar to the direction of travel that
does not detect an obstacle. The algorithm determines the
points where the sonar beams intersect the perpendicular
from the point where the obstacle was detected to the
direction of travel. The algorithm tries to find a segment
determined by the intersection points, starting from the
intersection point of the selected sonar, which is at least long

as minh . The desired point is located at the middle of this

segment.The segment is searched using:

 Zejanglerangemh))(tan(_

where: h is the length of the segment, rangem_ is the

distance to the closest obstacle projected on the direction of

travel,)(jangle is the angle formed by the sonar,

))(tan(_ ianglerangemZe is the exclusion zone, i and j

are the sonar sensors used at the current step. The coordinates
are determined using:

)sin()
2
()cos(_

)sin()
2
()cos(_

rrr

rrr

Ze
h

rangemyy

Ze
h

rangemxx

The path from the current robot’s position to),,(yxP is

determined using Quantic equations [6]. The formula of the
Quantic G

2
-splines is:

)(

)(5
5

2
210

5
5

2
210

1,

u

uuu

uuu

up

i

iiii

iiii

ii

)0(0 ii x

))0(cos(11 ii g

 0sin))0(cos(
2

1 2
132 iiii kgg

))0(sin(
2

1

))0(sin(
2

3
))0(cos(

2

1
4

))0(cos(
2

3
610

11
2
2

2
1142

3113

ii

iii

iii

kg

kggg

ggxx

))0(sin(

))0(sin(
2

3
))0(cos(7

))0(cos(
2

3
815

11
2
2

2
1142

3114

ii

iii

iii

kg

kggg

ggxx

))0(sin(
2

1

))0(sin(
2

1
))0(cos(

2

1
3

))0(cos(
2

1
36

11
2
2

2
1142

3115

ii

iii

iii

kg

kggg

ggxx

)0(0 ii y

))0(cos())0(sin(
2

1 2
132 iiii kgg

))0(cos(
2

1

))0(cos(
2

3
))0(sin(

2

1
4

))0(sin(
2

3
610

11
2
2

2
1142

3113

ii

iii

iii

kg

kggg

ggyy

))0(cos(

))0(cos(
2

3
))0(sin(7

))0(sin(
2

3
815

11
2
2

2
1142

3114

ii

iii

iii

kg

kggg

ggyy

))0(cos(
2

1

))0(cos(
2

1
))0(sin(

2

1
3

))0(sin(
2

1
36

11
2
2

2
1142

3115

ii

iii

iii

kg

kggg

ggyy

 22
]1[][]1[][][nynynxnxnl

 sTnlnv /][][

 sTnxnxnynyan /]1[][],1[][2tan][

 Tsnvna /][][

 Tsnna /][][

Figure 6. The desired trajectory for obstacle avoidance

782

Figure 7. The schematic of the obstacle avoidance algorithm.

The desired trajectory for obstacle avoidance is presented in
Fig. 6 with a blue line, the blocked trajectory is marked with
a black line, and h-min is the width of the PowerBot plus a
small safety margin. The minimum range is the sensitivity
bubble marked with a red line.

This new trajectory is fed to the controller and when the
robot reaches the end point of the trajectory it will move
forward in a straight line with constant velocity until the
obstacle has been cleared. Once the obstacle has been cleared
a return trajectory is calculated and the initial trajectory is
resumed (see the schematic of the obstacle avoidance
algorithm from Fig.7). The obstacle avoidance procedure is
the same for both laser and sonar experiment.

IV. SIMULATION AND REAL-TIME CONTROL

A. Simulation results

Simulation results are presented in order to validate the
proposed algorithm for obstacle avoidance. All the
simulations were made using MobileSim which is a software
designed to simulate the behavior of robots produced by
Adept Mobile Robots Inc. A map with the simulated
obstacles was created using Maper3Basic and loaded into
Mobilesim. The trajectory tracking was first tested in the
absence of any obstacle and the robot followed the intended
trajectory with small tracking errors.

The obstacle avoidance performance of the algorithm is
tested using the trajectory as the global trajectory needed to
be tracked and two obstacles blocking this path. Fig. 8. and
Fig. 9. show the MobileSim simulated trajectory of the robot
obtained after avoiding the obstacles. It can be seen that the
algorithm allows the robot to avoid the obstacles and
continue on its initial trajectory when the path is clear. Fig.
10 and Fig. 11 presents the simulated trajectory and the
desired trajectory resulted from the initial trajectory and the
local avoidance trajectories.

B. Real-Time results

In Fig. 12 is presented the results from the real-time
experiment using the laser with one obstacle blocking the
intended trajectory. From this figures it can be determined
that the algorithm is capable of tracking a desired trajectory
and avoid obstacles, that block the intended path, and resume
the initial trajectory afterwards. The switch between the
initial trajectory and the local avoidance trajectory and back
increase the trajectory-tracking errors. One of the causes for
the larger tracking errors can be attributed to the delay caused

by the time required to obtain the sonar readings and process
the information, which leads to higher delays in the command
inputs as opposed to the case when only the sliding-mode
control is used and the sonars are disabled.

Real-Time experiments are carried out on the PowerBot
which is a mobile robot specially designed for autonomous,
intelligent navigation and handling of large payloads.

V. CONCLUSIONS

An algorithm for discrete-time sliding-mode control and
obstacle avoidance for wheeled mobile robots is presented in
this paper. The effectiveness of this algorithm is proven by
good results from simulations and real-time experiments.

The robot tracks a global trajectory and, if an obstacle is
detected, a local trajectory is generated and followed until the
obstacle is cleared and the initial trajectory is resumed. Both
trajectories are followed using the same discrete-time sliding
mode controller. An increase of the errors in the trajectory
tracking is caused by switching from the global and local
trajectories, but the robot can still follow the trajectory with
satisfactory precision.

The advantage of using lasers to detect obstacles, reduce
the number of unwanted situations because they can scan the
surface compared with the sonar.

In the future we plan to adapt this algorithm for avoiding
mobile obstacles with small delays using super-twisted
sliding mode control, and could be able to eliminate the
chattering problem which improves the performance of the
trajectory-tracking control.

ACKNOWLEDGMENT

This work was supported by the Romanian Executive
Unit of Funding Higher Education, Research, Development
and Innovation (UEFISCDI), project number PN-II-ID-PCE-
2011-3-0641, project title: Advanced control of reversible
manufacturing systems of assembling and disassembling
using wheeled mobile robots equipped with robotic
manipulators and by the project number PN-II-PT-PCCA-
2013-4-0686, project title: Prototypes of autonomous robotic
systems for medical/social assistance and servicing of
manufacturing processes in metallurgy, ceramics, glass and
automotive.

Figure 8. The MobileSim simulated trajectory with 2 obstacles blocking

the intended trajectory for sonars

783

Figure 9. The MobileSim simulated trajectory with 2 obstacles blocking

the intended trajectory for laser

Figure 10. The simulated trajectory and the desired trajectory for sonars

Figure 11. The simulated trajectory and the desired trajectory for laser

Figure 12. Real-Time results of the desired trajectory and real trajentory

REFERENCES

[1] V.I. Utkin, Sliding modes in optimization and control. New York:

Springer-Verlag, 1992.

[2] V.I. Utkin, J. Shi, Sliding mode control in electromechanical systems.

London: Taylor&Francis, 1999.

[3] W. Gao, J. C. Hung, “Variable structure control on nonlinear systems:

A new approach,” IEEE Transactions on Industrial Electronics, vol.
40, pp. 45–55, 1993.

[4] W. Gao, Y. Wang and A. Homaifa, “”Discrete-time variable structure

control systems,” IEEE Transactions on Industrial Electronics, vol.
42, pp. 117–122, April 1995.

[5] R. Solea, A. Filipescu and G. Stamatescu, “Sliding-mode real-time
mobile platform control in the presence of uncertainties,” in Proc.

48th IEEE Conference on Decision and Control and 28th Chinese

Control Conference, Shanghai, pp. 7747-7752, 2009.

[6] R. Solea, “Sliding mode control applied in trajectory-tracking of

WMRs and autonomous vehicles,” Ph.D. Thesis Dept. of Electrical
and Computer Engineering, University of Coimbra, Portugal, 2009.

[7] R. Solea, A. Filipescu, U. Nunes, “Sliding-mode control for

trajectory-tracking of a wheeled mobile robot in presence of
uncertainties,” in Proc. 7th Asian Control Conference, Hong Kong,

pp. 1701-1706, 2009.

[8] R. Solea, A. Filipescu, S. Filipescu and B. Dumitrascu, “Sliding-mode

controller for four-wheel-steering vehicle: Trajectory-tracking

problem,” in Proc. 8th World Congress on Inteligent Control and
Automation, Jinan, pp. 1185-1190, 2010.

[9] R. Solea, A. Filipescu, V. Minzu and S. Filipescu, “Sliding-mode
trajectory-tracking control for a four,” in Proc. 8th IEEE International

Conference on Control and Automation, Xiamen, pp. 382-387, 2010.

[10] K. Furuta and Y. Pan, “Discrete-time variable structure control,”
Lecture Notes in Control and Information Sciences, vol. 274, pp 57-

81, Berlin: Springer, 2006.

[11] B. Bandyopadhyay and S. Janardhanan, “Discrete-time sliding mode

control: A multirate output feedback approach,” Lecture Notes in

Control and Information Sciences, vol. 323, Berlin: Springer-Verlag,
2005.

[12] B. Dumitrascu and A. Filipescu, “Discrete-time sliding-mode
controller for wheeled mobile robots,” ,” in Proc. 18th International

Conference on Control Systems and Computer Science, vol.1,

Bucharest, pp. 397-403, may, 2011.

[13] B. Dumitrascu and A. Filipescu, “Sliding mode control of lateral

motion for four driving-steering wheels autonomous vehicle,” Annals
of the University of Craiova, vol(7), pp. 20-25, 2010.

[14] B. Dumitrascu and A. Filipescu, A. Radaschin, A. Filipescu Jr., E.
Minca, “Discrete-time sliding mode control of four driving/steering

wheels mobile platform,” in Proc. 8th Asian Control Conference

(ASCC), Kaohiung, Taiwan, pp 771-776, 2011.

[15] A. Filipescu, V. Minzu, B. Dumitrascu, A. Filipescu, “Trajectory-

tracking and discrete time sliding-mode control of wheeled mobile

robots, The 2011 IEEE International Conference on Information and
Automation, Shenzhen, China, pp. 27-32, 2011.

[16] B. Dumitrascu, “Contributions to control, navigation and obstacle
avoidance for mobile robots and autonomous vehicles,” Ph.D. Thesis

Dept. Department of Automation and Electrical Engineering,

University Dunarea de Jos of Galati, Romania, 2012.

[17] J. Borenstein, Y. Koren, “The vector field histogram-fast obstacle

avoidance for mobile robots,” IEEE Journal of Robotics and
Automation, vol. 7, pp 278-288, 1991.

[18] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots, IEEE International Conference on Robotics and Automation,

pp 500-505, 1985.

[19] Susnea I, A. Filipescu, G. Vasiliu, G. Coman, A. Radaschin, “”The
buble rebound obstacle avoidance algorithm for mobile robots,” in

Proc. 8th International Conference on Control and Automation,

Xiamen, pp. 540-545, 2010.

[20] Lumelsky, V., Skewis, T., “Incorporating Range Sensing in the Robot

Navigation Function.” IEEE Transactions on Systems, Man, and
Cybernetics,20:1990,pp.1058–10

784

