
  

 

Abstract— In this paper is presented an algorithm for 

trajectory-tracking and obstacle avoidance for wheeled mobile 

robots (WMR). The proposed algorithm creates a trajectory 

composed of a global trajectory generated off-line and local 

obstacle avoidance trajectories that are created when an 

obstacle is detected by the sonar and laser sensors. Only one 

discrete-time sliding-mode controller is required to track the 

resulting trajectory and it does not require separate controllers 

for following the intended trajectory and avoiding the obstacle. 

Quantic equations are used to generate the paths used by the 

robot and calculating the velocity, acceleration, angular 

velocity and angular acceleration needed by the discrete-time 

sliding-mode controller to avoid the obstacles Realistic 

simulations and experimental results are performed to test the 

validity and performance of the proposed obstacle avoidance 

algorithm and the trajectory tracking controller. 

I. INTRODUCTION 

Wheeled mobile robots are used in many applications, to 
carry out tasks in unknown environments, especially for 
industrial applications. Their ability to perform such tasks 
depends on how the environment interacts with objects. 
Some of these applications require the robots to track a set 
trajectory. The WMRs must go around occasionally 
temporary obstacles, like a: broken robot, columns, boxes, 
tables and workers, and the robots will be unable to follow 
the desired trajectory leading to a full stop of the entire work. 
A solution to this problem is to include an obstacle avoidance 
module that will allow the robot to avoid the blocked part of 
the trajectory and to return to the desired trajectory. This 
solution will add a delay to the process but will prevent a full 
stop of the process. Sliding-mode control (SMC) is a robust 
approach that is used for applications involving nonlinear 
control. The SMC methodology has been presented in [1]. 
Sliding-mode has been used in many control systems, such 
as: [2]-[16]. One of the simplest obstacle avoidance 
algorithm is “the bug”, proposed by in [20]. This algorithm 
requires the robot to circle the obstacle before determining 
the best point to continue towards its goal.  Other obstacle 
avoidance algorithms use virtual potential fields, like in [18] 
to determine the path the robot has to take in order to avoid 
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the obstacle. The algorithms consider that the robot is 
subjected to forces that pull the robot towards the goal and 
rejecting forces that pull the robot away from the obstacles. 
The robot’s trajectory results from the combination of these 
forces. A vector field histogram is used in [17] for obstacle 
avoidance, that uses a histogram to reduce the errors from the 
sensors. A bubble rebound algorithm is used in [19] to avoid 
obstacles. The algorithm uses a sensitivity bubble to 
determine if an obstacle is blocking the path. If an obstacle is 
detected the algorithm calculates the path that has the 
minimum density of obstacles and moves in that direction 
until the goal is visible or a new obstacle is detected.  

An algorithm that is capable of tracking a desired 
trajectory and avoids obstacles that block the desired path by 
generating local trajectories and following them until the 
initial trajectory can be resumed is proposed in this paper. 
The global and local trajectories will be merged and form a 
new trajectory that can be tracked using only one discrete-
time sliding-mode controller. The robot used to test the 
algorithm is the two driving wheels/two free wheels 
(2DW/2FW), PowerBot (Fig. 1). The obstacles are detected 
using the sonar sensors of the robot or the laser mounted on 
the robot and the sensitivity bubble algorithm from [19]. 

The rest of the paper is organized as follows: discrete-
time, sliding-mode control based on kinematic model of the 
WMR is presented in Section II; bubble rebound obstacle 
avoidance algorithm for the 2DW/2FW. WMR PowerBot is 
presented in Section III; simulation results of obstacle 
avoidance, trajectory tracking control are presented in 
Section IV; some final remarks can be found in Section V. 

II. DISCRETE-TIME SLIDING-MODE CONTROL 

Consider the model of a wheeled mobile robot, presented in 

Fig. 2. The model takes into account the two diametrically 

opposed drive wheels of radius R, the distance between the 

wheels (2L), the angular speeds of the drive wheels 

),( RL 
, the center point (CP) of the robot. 

 
Figure 1.   PoweBot avoiding an obstacle using Urg laser 
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Figure 2.   Kinetic model of a differential drive robot. 

The localization of the robot is given by:
 rrr yxP  ,,

, 

where rx  represents the position on the x axis, ry  the 

position on the y axis, r  the heading of the robot, rv  the 

linear velocity while, 
)( r represents the angular velocity of 

the robot. 
Considering a sample interval Ts and a zero-order hold, 

the kinematic model in discrete-time is: 
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The trajectory tracking problem is how to design a 
controller capable of tracking a desired trajectory. For this 
purpose a virtual robot, with the desired trajectory 

      Tdddd kkykxkq ][ , is considered and the 

following kinematic model of the virtual robot is obtained: 
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The trajectory tracking errors where:  

 dddd yxP ,,  represents the desired pose, dv the desired 

linear velocity, d  the desired angular velocity.  

The trajectory-tracking errors are shown in Fig.5, and can be 
expressed as follow: 

 
Figure 3.   Trajectory tracking errors 
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The error dynamics for trajectory tracking are defined as: 
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where: 

 ][cos][1 kkvv er   

 ][sin][2 kkvv er   

are the linear speed along x-axis and y-axis, respectively. 
Corresponding to [4], the discrete-time sliding mode occurs  
if the following attractiveness condition is satisfied: 

 0])[]1[(][  ksksks  

with s sliding surface. The reaching law proposed in [15] is:  

 ])[sgn(][)1(]1[ ksTksTqks ss    

 110  Tq
 



 10  sT  

where 0sT  is the sampling period, 0  is the reaching 

velocity, 0q  is the converging exponential. The magnitude 

of the resulting chattering is limited within the quasi-sliding 
mode bandwidth: 
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The sliding surfaces are defined as follow: 
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where k0, k1, k2 are positive constant parameters, ex , yeand 

2 are trajectory tracking errors. From (10) and (14), the 

sliding surfaces can be expressed as follow: 
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The discrete-time sliding-mode controller (the linear and 
angular speeds) is obtained from (10), (14), (16), (17): 
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III. SONAR AND LASER BASED OBSTACLE AVOIDANCE 

ALGORITHM 

The robot is intended to track a given trajectory as long as 
no obstacle is detected. If an obstacle is detected a local 
trajectory for the avoidance of the obstacle is calculated and 
the robot will track this new trajectory until the obstacle has 
been avoided and afterwards will return to tracking the given 
trajectory. The robot uses the same discrete-time sliding-
mode control for both the desired trajectory and the local 
avoidance trajectory. 

For the sonar based obstacle avoidance algorithm the 
WMR PowerBot uses 14 sonar sensors in order to detect the 
obstacles. The sensors cover an area of 180 degrees and 
allow the detection of any obstacle that can block the robot’s 
path. Fig.5 presents the configuration of the sonar sensors of 
the PowerBot. For the laser based obstacle avoidance 
algorithm the WMR PowerBot uses a URG 2.0 Laser (Fig.4). 
The obstacle detection is achieved using the sensitivity 
bubble from [19], This bubble is dependent on the robot’s 
speed and allows for a good detection of the obstacles. Using 
safety coefficients and the robot’s speed a safety area is 
defined inside the sensibility bubble and any obstacle 
detected inside this area will trigger the obstacle avoidance 
procedure.  

 
Figure 4.  Laser detection zone 

The components for the sensitivity bubble are calculated 
using: 

 sii Tvkb   

where: i  is the number of the sonar; bi  is the component of 

the sensitivity bubble corresponding to sonar i ; ki  is the 

safety coefficient of the bubble corresponding to sonar i ; v  

is the velocity of the robot; Ts  is the sample time. Fig. 6 

presents an example of an obstacle that was detected by the 

sensitivity bubble. An obstacle is detected when the distance 

to the obstacle measured by any of the sonar sensors is lower 

than the component of the sensitivity bubble corresponding to 

that sonar: 

 ibiRange )(  

First a global desired trajectory is generated off-line using 
a program that calculates the desired velocity, acceleration, 
angular velocity and angular acceleration for each time 
sample. A program for generating the global trajectory is 
presented in [6]. Before imposing the trajectory to the robot, 
the distances measured by the sonar sensors are collected and 
the sensitivity bubble is calculated. Using this information 
the algorithm determines if an obstacle was detected. As long 
as no obstacle is detected the desired trajectory is fed to the 
controller and the robot tracks this trajectory to its 
destination. If an obstacle is detected the obstacle the obstacle 
avoidance procedure is triggered. An obstacle detected using 
the sensitivity bubble is presented in Fig. 5. In order to avoid 
the obstacle, a local trajectory is generated. The local 
trajectory for the obstacle from Fig.5 is presented in Fig. 6. 
Define two search areas for the new trajectory bounded by 
the sonar arrays. 

 
Figure 5.  The sensitivity buble of the PowerBot 

The first seven sonar sensors determine the left area for 
avoidance and the last seven the right area for avoidance. The 
search will begin in the area opposite to the area with the 
closest obstacle. A new search will be performed in the other 
area if a solution is not found.  First the coordinates of the 
end point of the trajectory that allows the obstacle to be 
avoided is calculated. This point is situated on the line 
perpendicular to the direction of travel from the point where 
the closest obstacle was detected. 

Consider minh the width of the PowerBot plus a small 

safety margin, as the minimum width of an area that allows 
the passage of the robot. Once the search area was selected, 
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will search for the closest sonar to the direction of travel that 
does not detect an obstacle. The algorithm determines the 
points where the sonar beams intersect the perpendicular 
from the point where the obstacle was detected to the 
direction of travel. The algorithm tries to find a segment 
determined by the intersection points, starting from the 
intersection point of the selected sonar, which is at least long 

as minh . The desired point is located at the middle of this 

segment.The segment is searched using: 

 Zejanglerangemh  ))(tan(_  

where: h  is the length of the segment, rangem_  is the 

distance to the closest obstacle projected on the direction of 

travel, )( jangle is the angle formed by the sonar,  

))(tan(_ ianglerangemZe  is the exclusion zone, i  and j  

are the sonar sensors used at the current step. The coordinates 
are determined using: 
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The path from the current robot’s position to ),,( yxP is 

determined using Quantic equations [6]. The formula of the 
Quantic G

2
-splines is: 
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Figure 6.  The desired trajectory for obstacle avoidance 
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Figure 7.  The schematic of the obstacle avoidance algorithm. 

The desired trajectory for obstacle avoidance is presented in 
Fig. 6 with a blue line, the blocked trajectory is marked with 
a black line, and h-min is the width of the PowerBot plus a 
small safety margin. The minimum range is the sensitivity 
bubble marked with a red line. 

This new trajectory is fed to the controller and when the 
robot reaches the end point of the trajectory it will move 
forward in a straight line with constant velocity until the 
obstacle has been cleared. Once the obstacle has been cleared 
a return trajectory is calculated and the initial trajectory is 
resumed (see the schematic of the obstacle avoidance 
algorithm from Fig.7). The obstacle avoidance procedure is 
the same for both laser and sonar experiment. 

IV. SIMULATION AND REAL-TIME CONTROL 

A. Simulation results 

Simulation results are presented in order to validate the 
proposed algorithm for obstacle avoidance. All the 
simulations were made using MobileSim which is a software 
designed to simulate the behavior of robots produced by 
Adept Mobile Robots Inc. A map with the simulated 
obstacles was created using Maper3Basic and loaded into 
Mobilesim. The trajectory tracking was first tested in the 
absence of any obstacle and the robot followed the intended 
trajectory with small tracking errors. 

The obstacle avoidance performance of the algorithm is 
tested using the trajectory as the global trajectory needed to 
be tracked and two obstacles blocking this path. Fig. 8. and 
Fig. 9.  show the MobileSim simulated trajectory of the robot 
obtained after avoiding the obstacles. It can be seen that the 
algorithm allows the robot to avoid the obstacles and 
continue on its initial trajectory when the path is clear. Fig. 
10 and Fig. 11 presents the simulated trajectory and the 
desired trajectory resulted from the initial trajectory and the 
local avoidance trajectories. 

B. Real-Time results 

In Fig. 12 is presented the results from the real-time 
experiment using the laser with one obstacle blocking the 
intended trajectory. From this figures it can be determined 
that the algorithm is capable of tracking a desired trajectory 
and avoid obstacles, that block the intended path, and resume 
the initial trajectory afterwards. The switch between the 
initial trajectory and the local avoidance trajectory and back 
increase the trajectory-tracking errors. One of the causes for 
the larger tracking errors can be attributed to the delay caused 

by the time required to obtain the sonar readings and process 
the information, which leads to higher delays in the command 
inputs as opposed to the case when only the sliding-mode 
control is used and the sonars are disabled. 

Real-Time experiments are carried out on the PowerBot 
which is a mobile robot specially designed for autonomous, 
intelligent navigation and handling of large payloads. 

V. CONCLUSIONS 

An algorithm for discrete-time sliding-mode control and 
obstacle avoidance for wheeled mobile robots is presented in 
this paper. The effectiveness of this algorithm is proven by 
good results from simulations and real-time experiments. 

The robot tracks a global trajectory and, if an obstacle is 
detected, a local trajectory is generated and followed until the 
obstacle is cleared and the initial trajectory is resumed. Both 
trajectories are followed using the same discrete-time sliding 
mode controller. An increase of the errors in the trajectory 
tracking is caused by switching from the global and local 
trajectories, but the robot can still follow the trajectory with 
satisfactory precision. 

The advantage of using lasers to detect obstacles, reduce 
the number of unwanted situations because they can scan the 
surface compared with the sonar. 

In the future we plan to adapt this algorithm for avoiding 
mobile obstacles with small delays using super-twisted 
sliding mode control, and could be able to eliminate the 
chattering problem which improves the performance of the 
trajectory-tracking control. 
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Figure 8.  The MobileSim simulated trajectory with 2 obstacles blocking 

the intended trajectory for sonars 
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Figure 9.  The MobileSim simulated trajectory with 2 obstacles blocking 

the intended trajectory for laser 

 
Figure 10.  The simulated trajectory and the desired trajectory for sonars 

 
Figure 11.  The simulated trajectory and the desired trajectory for laser 

 
Figure 12.  Real-Time results of the desired trajectory and real trajentory 
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